
Application Note:QCI-AN064  QuickSilver Controls, Inc. 
Date:  4 March 2009 8www.QuickSilverControls.com 
 

Property of QuickSilver Controls, Inc. Page 1 of 3 This document is subject to change without notice. 
QuickControl® and QCI® are Registered Trademarks of QuickSilver Controls, Inc. 
SilverLode™, SilverNugget™, SilverDust™, PVIA™, QuickSilver Controls™, and AntiHunt™ are trademarks of 
QuickSilver Controls, Inc.. 

 

 

Visual C# Serial Communication 
 
Overview 
This simple program, initializes the COM port and sends a Move Relative, Time Based (MRT) 
command to the attached QuickSilver Device. The device's response is received and 
displayed. 
 
It is assumed the reader is familiar with Windows, Visual C#,  QuickControl®, programming 
QuickSilver products, and QuickSilver’s serial communication. For more information see: 
 

• QCI-TD053 Serial Communications 

• SilverLode User Manual 
 
This document is meant to explain the setup and general design of the example. The details 
concerning communicating with a QuickSilver device are left up to the documents mentioned 
above and the source code comments. 
 
This example was created using Visual C# 2008 Express which is offered free from Microsoft. 
 
Microsoft and Windows are registered trademarks of Microsoft Corporation. 
 

Setup 
The following assumptions are made about the setup: 

• The device has already been initialized (using QuickControl) and connected to COM 1. 

• 8 Bit Protocol 

• 57600 Baud Rate 

• Unit ID of 16 
 



Application Note:QCI-AN064 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 2 of 3  

 

Supplied Files 
 

File/Folder Description 

CommTest Visual C# Project Folder 

 
Application Overview 
 

Dialog Box  
Pressing the ‘Test’ button will send an 
MRT command.  Responses are 
displayed in the text box. 
 
 
SerialPort class 
This example uses the SerialPort class 
supplied with Visual C#. 
 
You can add this control to your project 
by selecting Toolbox->Components-
>SerialPort and dragging it onto your 
project.     
 
 



Application Note:QCI-AN064 QuickSilver Controls, Inc. 
 

QuickSilver Controls, Inc. Page 3 of 3  

 

 
Form1.cs 
This is the main class for the 
dialog box. It contains the 
code that enables us to 
communicate with the device. 
 
 
 
 
 
The COM1 is setup in 
Form1_Load when the form 
first loads. 
 
 
 
 
 
 
 
 
 
 
When the ‘Test’ button is 
pressed, CmdTest_Click 
transmits the MRT command 
and appends the string to 
textBox1.   
 
 
 
 
The event handler 
serialPort1_DataReceived is 
called when data is received.  
The handler appends the 
received data to textBox1.   
 

namespace CommTest 

{ 

    public partial class Form1 : Form 

    { 

        // Used to pass rx data.   

        //  For production code, QCI  

        //  suggests using a cicular queue 

        string strRx; 

 

        // Constructor 

        public Form1() 

        { 

            InitializeComponent(); 

        } 

 

        // Configure COM when form opens 

        private void Form1_Load( 

            object sender, EventArgs e) 

        { 

            ConfigureCOM(); 

        } 

        private void ConfigureCOM() 

        { 

            serialPort1.PortName = "COM1"; 

            serialPort1.BaudRate = 57600; 

            serialPort1.Open(); 

        } 

        // Close COM port when form closes 

        private void Form1_FormClosing( 

            object sender, FormClosingEventArgs e) 

        { 

            if (serialPort1.IsOpen) serialPort1.Close(); 

        } 

        // Send MRT when Test pressed 

        private void cmdTest_Click( 

            object sender, EventArgs e) 

        { 

            // send move relative, time based(mrt) 

            //  mrt 40000 count,  

            //  100ms ramp time, 1000ms total time 

            string strCmd = "@16 177 40000 833 8333 0 0 \r"; 

            serialPort1.Write(strCmd); 

 

            // Write to textBox1 

            textBox1.AppendText("\n"); 

            textBox1.AppendText(strCmd); 

            textBox1.AppendText("\n"); 

        } 

        // Display controller response in text box. 

        private void DisplayText(object sender, EventArgs e) 

        { 

            textBox1.AppendText(strRx); 

        } 

        private void serialPort1_DataReceived( 

            object sender, 

            System.IO.Ports.SerialDataReceivedEventArgs e) 

        { 

            strRx = serialPort1.ReadExisting(); 

            this.Invoke(new EventHandler(DisplayText)); 

        } 

    } 

} 

 


